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Notes 

A Simple Heuristic Method for Analyzing the Effect of Boundary 
Conditions on Numerical Stability* 

It is shown that, contrary to the prevalent view, the Fourier method can be used to 
obtain information about the effect of boundary conditions on numerical stability. 

Numerical solutions to problems in such fields as fluid mechanics and heat 
transfer are commonly generated by means of finite-difference equations that 
approximate the governing partial differential equations and boundary conditions. 
Investigations of the numerical stability of such finite-difference equations, 
including the effects of the boundary conditions, are of paramount importance. 

The most widely used method for performing numerical stability analyses is 
the Fourier (or Von Neumann) method [l--4], which is simple and convenient 
to use. This method has been shown to yield necessary (and in certain cases 
sufficient) conditions for stability of pure linear initial-value problems with 
constant coefficients [2]. However, such problems form a very small subset of 
the problems to which the method is actually applied in practice. Practical problems 
typically involve variable coefficients, nonlinearities, and various types of boundary 
conditions. When applied to such problems, the Fourier method becomes heuristic 
rather than rigorous, but is still found to yield much useful information. This 
usefulness is not merely fortuitous, but is to be expected on the following basis [l]: 
If the complete difference equations are linearized about a small neighborhood 
in space and time, then the conditions for the applicability of the Fourier method 
are approximately satisfied locally (at least for short wavelengths and high fre- 
quencies), even though they are not satisfied globally for the problem as a whole. 
Thus, it is intuitively reasonable to expect a linearized local application of the 
Fourier method to yield essentially correct necessary stability conditions, even 
in complex problems where the method does not rigorously apply. This intuitive 
expectation has been borne out by a wealth of numerical evidence. Since rigorous 
methods of stability analysis are not available for most problems of practical 
interest, the use of the Fourier method in this heuristic local manner has become 
a well-established practice within the computing community. 

The statement is frequently made [2-4] that the Fourier method provides no 

* Work performed under Nuclear Regulatory Commission Contract Number AT(lO-l)-1375. 

238 
Copyright 0 1976 by Academic Press, Inc. 
AU rights of reproduction in any form reserved. 



BOUNDARY STABILITY ANALYSIS 239 

information about the influence of boundary conditions on numerical stability, 
and that to obtain such information the less convenient matrix method (or other 
inconvenient methods, such as the energy method or the Godunov-Ryabenkii 
criterion) must be used instead. This statement is correct with regard to the 
rigorous global application of the Fourier method, but it in no way constrains 
the heuristic local use of the method. Indeed, since the Fourier method provides 
useful stability information when applied locally at interior points, it is natural 
to expect a similar local application of the method at the boundaries to yield 
useful boundary stability information. The purpose of this paper is to call attention 
to this natural extension of the Fourier method, and to show by example that it is 
in fact capable of determining correct boundary stability restrictions. 

The concept of a local Fourier stability analysis is crucial here and requires 
clarification. A local stability analysis at a given mesh point is performed by 
assuming a Fourier mode dependence for the relation between the values of the 
dependent variables at the given mesh point and their values at the neighboring 
mesh points to which the given point is directly coupled by the difference scheme. 
Usually, this coupling extends only to the immediately adjacent mesh points. 
Although the fact is seldom stated explicitly, it is obvious that for a heuristic local 
analysis to be relevant for the problem as a whole, it must be performed at every 
mesh point in the region of computation. The most restrictive stability condition 
resulting from these analyses is the one which must be observed for overall 
stability of the calculation. Ordinarily, all the interior mesh points are equivalent 
(i.e., they are coupled to their neighbors by equations of identical form), so that 
only one representative interior mesh point need be considered. (This fact is the 
reason why one does not usually think in terms of performing a separate local 
analysis at each mesh point.) However, the boundary points are invariably 
anomalous in that the structure of the boundary difference equations differs from 
that of the interior difference equations. Consequently, the boundary points lead 
to different local stability conditions than do the interior points. In many cases, 
these boundary stability conditions are more restrictive than the interior stability 
condition and hence, govern the overall stability behavior. 

The above considerations constitute our rationale for applying the Fourier 
method locally at the boundaries. We now proceed to illustrate the general method 
by working out a particular simple example. The heat flow equation with unit 
diffusivity is considered: 

aujat = a3.qax2 (0 < x < 1) 

subject to the boundary conditions 

(1) 

au/ax = h,(u - v,), at x=0, (2) 
&/ax = -h,(u - v,), at x=1, (3) 
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where h, , h, , u1 , and v2 are constants. We shall examine the stability of the 
following explicit finite-difference approximation to Eqs. (l)-(3): 

&- (uj”” - Uj”) = & (uj”tl - 2U,” + &) ci = 0, l,.‘., N), (4) 

(1/2dx)(u,” - U”,) = h,(u,” - v,), (5) 

(l/fdx)(u~+, - unN_1) = -h2(uNn - u2), (6) 

where N dx = 1, and ujn denotes the difference approximation to u(j Lx, n At). 
Equations (5) and (6) effectively define the quantities z& and u:+~ required by 
Eq. (4) whenj = 0 andj = N. Because of Eqs. (5) and (6), the structure of Eq. (4) 
for j = 0 and j = N differs from that for j = 1, 2,. .., N - 1. This difference may 
be seen explicitly by rewriting Eqs. (4)-(6) in the form 

& (4” - Ujn) = & (uj”,, - 2ujn + &) (j = 1, 2,..., N--l), (7) 

& (uj”” - Uj”) = & (ujn+l - q&n) + * (j = O), 

& (uj”” - Uj”) = & (z& - a2ujy + * (j = N), (9) 

where a, = 1 + h, Ax and a2 = 1 + lz, Ax. 
Since Eqs. (7)-(9) differ in their basic structure, their stability properties also 

may be expected to differ. Each of these three equations, therefore, requires a 
separate local Fourier stability analysis. The correct stability condition will be 
the most restrictive of the three conditions resulting from these analyses. 

The terms involving ZIP and ZI, in Eqs. (8) and (9) are irrelevant to a linear stability 
analysis and are therefore omitted in what follows. 

The stability analyses of Eqs. (7)-(9) are performed by replacing uj” by 
ti exp(ikj Ax) p, where 6 is a constant amplitude factor, k is the wavenumber, 
and 5 is the growth factor. The stability condition is that ( .$ / < 1 for all k in the 
interval [0, r/Ax]. Applying this procedure to Eq. (7), we find 

f = 1 - ~(A~/(Ax)~) sin2(kAx/2). (10) 

Similarly, Eqs. (8) and (9) yield 

and 
8 = 1 + 2(At/(Ax)2)(eikdm - a,) 

f = 1 + 2(Ar/(Ax)2)(e-i”“” - aJ, 

(11) 

(12) 
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respectively. The condition that j < 1 < 1 for all relevant k then leads to the 
stability restrictions 

(13) 

W@X)” < l/(1 + a2> = l/(2 + h, w, 
corresponding to Eqs. (7)-(9), respectively. Equation (13) is the usual Fourier 
stability result obtained by disregarding the boundary conditions; that is, by 
analyzing Eq. (7) alone. The correct stability condition, including the effects of 
the boundary conditions, is the most restrictive of Eqs. (13)-(15). The condition 
in Eq. (13) is always the least restrictive and hence, may be ignored; thus, the final 
stability condition is 

ot/(dX)2 < l/Q + ho h), 

where h, is the larger of h, and h, . The preceding result is in agreement with the 
necessary condition obtained by the matrix method [3] and can be shown to be 
a sufficient condition by applying the energy method to the difference Eqs. (4)-(6). 

The preceding example illustrates the general application of the local Fourier 
method to the problem of determining the effect of boundary conditions on 
numerical stability. The basic idea is very simple: The Fourier method, in addition 
to being applied locally to the difference equations used in the interior of the 
computation region, is also applied to the difference equations used on the 
boundaries of that region. The boundary difference equations will generally have 
a different structure and hence, different stability properties, than the interior 
difference equations. There is no reason to believe that the boundary difference 
equations are less susceptible to a local Fourier analysis than the interior difference 
equations; in either case, only a given mesh point and its immediate neighbors 
are involved. 

The preceding example involves only a single equation. Clearly, however, the 
method can be applied equally well to a system of equations. Again, three separate 
stability analyses are required: one for the equation system at a representative 
interior point and one for each boundary point. Each of these three analyses will 
involve an amplification matrix [2] rather than a scalar amplification factor. The 
stability condition is that no eigenvalue of any of these three matrices have a 
modulus exceeding unity. 

The method presented here must be described as heuristic in that no rigorous 
conditions for its validity have been established. However, the method has been 
applied successfully to a number of special cases. Moreover, we reemphasize that 
the conventional Fourier method is usually applied in practice as a local method 
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and hence, is equally heuristic. Therefore, we conjecture that the validity of the 
Fourier method, when applied in a linearized local manner, is essentially the 
same for boundary points as for interior points. 
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